导航栏

×
祝福语 > 生日祝福大全 > 导航

众数中位数教案集合

“摘一片雪花,把祝福串成洁白的树挂,为你的生日奉献一朵亮丽的心花。”每个都很重视自己的生日,为了表示心中的情意,都会第一时间送上生日祝福语。您是否想让自己的生日祝福语更有特色呢?下面是小编为大家整理的“众数中位数教案集合”,仅供参考,大家一起来看看吧。

众数中位数教案 篇1

一、活动目标

1、培养幼儿相互合作,有序操作的良好操作习惯。

2、发展幼儿的观察力及比较判断的能力。

3、引导幼儿学习比较高矮,知道高矮是通过比较而来的,学习在同一高度平面上比较高矮,并能按高矮给物体排序。

二、活动准备

1、每人一套操作材料(大矿泉水瓶、小矿泉水瓶、椰奶瓶、旺仔牛奶瓶)。

2、事先设置好表演情境。

三、活动过程

1、引导幼儿学习在同一平面上比较两个物体的高矮。

设置表演情境。请两个小朋友比高矮,甲站在地板上,乙站在椅子上,问:他们俩究竟谁高,谁矮呢?这样能比出高矮来吗?为什么?鼓励幼儿充分讨论。

教师小结:比较高矮时,俩人必须都站在同一平面、同一高度上,这样才能比较出谁高谁矮。

幼儿示范正确的比高矮方法。

2、引导幼儿发现高矮是通过比较而来的。

请一个比前面二个小朋友更矮的小朋友上来与他们比高矮,问:怎么一会儿说这个小朋友矮,一会儿又说这个小朋友高,到底他是矮还是高呢?

引导幼儿观察、思考得出结论:说一个人是高还是矮要看他和谁比。

3、引导幼儿不受物体大小、形状的影响,按高矮给物体排序。

指导语:一天,几只瓶子在一起吵吵嚷嚷,它们想出去走走,可是不知道该怎么排队,现在请小朋友都来帮它们排排队,排好以后要说说你们是怎么给它们排的队。

4、幼儿通过自身参与,进一步体验物体的高矮是比较出来的。

玩游戏《比高矮》:将幼儿分成几个小组,选出每组的小朋友,再派出来比赛,选出全班的小朋友,颁发奖牌,并鼓励小朋友,多吃饭菜、多运动,才长得高。

四、活动延伸

带领幼儿观察幼儿园的房屋、树木、运动器械等,并比较它们的高矮。

活动反思:

我认为本次活动设计是遵守循序渐进的原则,先请两个幼儿上台比较高矮,让幼儿作为活动的主体,比起图片来更直观,先让幼儿自己来比较,更能激发幼儿的学习兴趣,再来观察图片比较高矮,最后进行排序。幼儿学起来是层层递进的,对高矮概念掌握的较好,完成原先设立的目标。

众数中位数教案 篇2

关于平均数、中位数和众数教学设计

一、问题提出

1.一名警察在高速公路上随机地观察了6辆车的车速,然后他给出了这样一份报告:

调查时间:12月1日8:00——8:15。

调查地点:高速公路某路段。

调查车辆数目:6辆

调查结果如下表和下图。

看到以上的统计图表,传递给我们的一组数据:

66、57、71、54、69、58

现在我们对收集来的这些数据进行分析,找出这一组数据的代表。小学我们已学习过的平均数就是这组数据的一个代表。

通过计算这6辆车的车速的平均值为:(66+57+71+54+69+58)÷6=62.5(km/h)

除了平均数可以作为这一组数据的代表之外,今天我们还要学习常用的中位数和众数。

所谓“中位数”,就是把一组数据由低到高重新排列,用去掉两端逐

步接近正中心的办法可以找出处在正中间位置的那个值,即中位数。

如果正中间位置有两个数呢?那么它的中位数就是这两个中间数的平

均数。

上述66、57、71、54、69、58

重新由低到高排列为:54、57、58、66、69、71。

去掉两端逐步接近正中心有两个数是58和66。那么这组数据的中位数为(58+66)÷2=62。

所谓“众数”就是一组数据中出现频数最多的那个数,叫做众数。如果一组数据中出现频数最多的是并列的两个数,不是用这两个数的平均数做它们的众数。而是说这两个值都是它们的众数。如果一组数据中没有哪一个数值出现的次数比别的.多,我们就说它们没有众数。

上述66、57、71、54、69、58中就没有哪一个数值出现的次数比别的多,我们说这一组车速没有众数。(切记:没有众数,不能说众数为0)

小结:

平均数是描述一组数据的一种常用方法,反映了这组数据中各数据的平均大小。

中位数是描述数据的第一种方法,将一组按由小到大的顺序排列好的数据平分为左右两部分(这两部分所含的数据个数相等)中位数就

是这两部分数的分界线。这里要注意的是统计数据个数的时候,相等的数据不能结合起来只当一个数据。

“众数”告诉我们,这个值出现的次数最多,一组数据中可以不止一个众数,也可以没有众数。

平均数、中位数和众数从不同侧面给我们提供一组数据的面貌,正因为如此,我们把这三种数作为一组数据的代表。

2.阅读课文P99表10.22

表中给我们提供哪些信息(给我们31个城市208月23日8时预报的各地当日最高气温值)。

这些数据的平均值为30.2℃。

它们的中位数是:31℃。

它们的众数为32qZ。

二、练习

P101 1、2

三、用计算器计算平均数

当数据个数很多时,用计算器来算就显得方便。只要我们按照指定的顺序按键,将各个数据输入计算器,然后按一下有关的键,就可以直接得到所要的结果。

众数中位数教案 篇3

一、教学内容:

《实验教材·数学》五年级上册第107-109页。

二、教学目标:

1、知识与技能:在现实背景中,理解并体会中位数和众数的意义;会求中位数与众数。

2、过程与方法:

(1)体会“平均数”“中位数”和“众数”各自的特点;

(2)根据现实生活中具体的情况,选择适当的统计量表示数据的不同特征。

3. 情感、态度、价值观:培养学生具体问题具体分析的能力;体会数学服务于生活。

三、教学重点:

1、结合情境理解并体会中位数和众数的意义;

2、对统计量的选择能力。

四、教学难点:

1、根据具体问题情境选择适当的统计量表示数据的集中趋势。

2、根据统计量进行简单的预测或作出决策。

我公司现招聘员工,员工的月平均工资是3000元。(谁来读一读?)

小马觉得待遇不错,就应聘到了这家公司。一个月后,他拿到了工资但却产生了疑问(投影)什么疑问?他找到主管,质疑招聘广告内容有假,这时,人家给他拿出了这个月员工的.工资表,并很自信的告诉他招聘广告内容是真实的。

小马拿过工资表就赶紧算,算什么?怎么求月平均工资?

果真是3000元,看来招聘广告内容不假,小马怎么会对招聘广告真实性有质疑呢?

招聘广告怎么改才不至于使应聘者产生这样的误会?为什么用1500元?

在统计学中把这样的数起叫众数(板书:众数)你怎样确定一组数中的众数呢?一组数据中出现次数最多的那个数。板书:(最多)

两组教师踢毽个数的平均数、众数分别是多少?

位是位置的位,你认为第一组教师踢毽个数的中位数是几?

小组合作找出第一组教师踢毽个数的中位数,用实投汇报。(引导划数法)

用划数法找到第二组教师踢毽个数的平均数。

这是一组教师在规定时间内跳绳个数记录:

这时发现漏记了一个成绩,加上这个成绩从大到小排列后是:

小结:中位数只和一组按大小顺序排列数据的中间位置上数据有关,如果单数个数据就是最中间的那个,要是双数个数据,就是最中间两个数的平均数而平均数与数据中的每一个都息息相关。

平均数说明的是整体的平均水平;众数说明的是数据中的多数情况;中位数说明的是数据中的中等水平。

1、射击队准备从两名运动员中选一名去参加射击比赛,下面是他们的选拔成绩(单位:环):

2、五(3)班准备在两名女生中选一名参加投篮比赛,下面是她们8次投篮的成绩记录(单位:个)

3、五(3)班一次数学调研测试的成绩,如下表(单位:分)。

仔细观察这次测验成绩,说说发现了什么?

政府的听证会的目的。

谈收获。

众数中位数教案 篇4

教学目标:

1.通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。

2.培养学生发现问题、分析问题、解决问题的能力,并在具体活动中培养学生的探究意识与合作能力。

3.感受统计在生活中的应用,增强统计意识,培养统计能力。

教学重点:认识并会求中位数和众数,能结合具体情境理解其实际意义。

教学难点:根据具体问题情境选择适当的统计量表示数据的不同特征。

教学准备:课件

教学过程:

一、创设情景激趣引入

很高兴今天能够在这里认识大家,今天我主要是想给大家介绍两个朋友。

先请欣赏一段视频。

师问:你们知道他们是在干什么吗?

生齐答:开运动会。

师:是的,前几天我们学校举办了20xx年春季田径运动会,在这次运动会上我记录了立定跳远一个小组的预赛成绩,如下表(课件出示):

姓名陈银刘俊胡榜刘敏向旺胡周吴坤蒋奎汤浩

成绩(cm)15515015015014814714511060

师:刚才同学们看了他们的竞赛成绩,下面请同学们帮忙算算他们的平均成绩好吗?

学生动手计算然后汇报。(平均数:135)

师:那么请同学们想一想如果我用平均数135cm来代表这个组的同学跳远的水平,同学们觉得合适吗?

学生思考后汇报。(因为就除了两个同学是以外其他同学的成绩的都要比这个数大)

过渡:由于有一个数很小,平均数在这里不能真实反映这个组同学的跳远水平。

二、合作探究探索新知

1、师:你认为用怎样的数表示这个组同学的跳远水平比较合理,为什么?先自己想一想,然后和你们组的同学讨论一下。

学生汇报:

预设:1、用148cm比较合适;

2、用150cm比较合适;

(针对学生的汇报情况引导学生一一加以分析,在分析解决问题的同时认识中位数和众数。)

2、认识中位数和众数

1)师:我们来看一看148在成绩表中所处的位置有什么特点?

生:在最中间。

师:这就是中位数。

(这就是今天要给同学们介绍的第一个朋友:中位数)

板书:中位数

(揭示中位数的概念)中位数:将一组数从小到大(或从大到小)

排列,中间的数称为这组当数的中位数。(出示幻灯片)

2)我们再来看看一看150这个数,我们发现在这一组数中出现最多的就是它,像这样的数我们把它叫做众数。

(这就是我要给同学们介绍的第二个朋友:众数)

师:你能说说什么是众数吗?

学生回答。教师总结:

众数:一组数据中出现次数最多的数称为这组数据的众数。(出示幻灯片)

教师小结:(回到本课开始的问题进行进一步的解释)数据148处于中间,反映的是这个组男同学跳远的中等水平,能表示这组数据的中等水平。150出现次数最多,体现的是多数同学的水平;由于一个同学情况特殊成绩较差,使平均数一下子变小了,平均数135已经不能合理的这些同学的跳远水平了。

三、做游戏以完善概念

师:刚才我们认识了两位新朋友,下面我们来玩个游戏轻松一下。

游戏1:找朋友。

游戏2:猜年龄。

先简单介绍游戏规则。

游戏结束后教师简单总结求一组数的中位数和众数的方法。

四、解决问题。

师:刚才我们已经学会了怎样求出一组数的中位数和众数,那么中位数和众数在我们的生活中究竟有哪些用处呢?下面我们就利用平均数、中位数和众数的反映特征解决生活中的问题。

1、下列几种情况一般使用什么数?

(1).要表示同学们最喜欢的动画片,应该选取()。

a.平均数b.中位数c.众数

(2).五年(1)班有50人,五(2)班有45人,要比较两个班平均成绩,应该选取()。

a.平均数b.中位数c.众数

(3).在一次数学单元检测中,某个选手想知道自己在全班处于什么水平,应该选取()。

a.平均数b.中位数c.众数

2、某小组进行跳绳比赛,每个成员1分种时间跳的次数如下:

2351351309011012018012590。

(1)分别计算这组数据的平均数和中位数。

(2)你认为平均数、中位数哪一个能更好地表示这组同学的跳绳水平?

3、某商店销售5种领口分别为38cm,39cm,40cm,41cm,42cm的衬衫,为了了事各种领口的衬衫的销售情况,商店统计了某月的销售情况(见下表)

领口尺寸/cm3839404142

售出件数131934159

你认为商店应多进那种衬衫?

五、小调查:老师上完这节课,后面的评委就要给老师打分,在计算我的最后得分时往往去掉一个最高分和一个最低分,再计算剩下的得分的平均数,你知道这是为什么这么吗?学生讨论交流后教师总结.

学生讨论交流。

六、小结:通过这一节课的学习你有收获吗?能把你的收获告诉我们吗?

学生回答。(教师肯定)

七、板书设计:中位数和众数

结束语:今天这节课我们一起学习了中位数和众数,在我们以后的生活中,我们会经常用到平均数、中位数和众数的知识解决问题。我们要根据要求和数据特点灵活选择。生活处处离不开数学,如果你是个有心人,就到生活中去寻找数学问题并运用数学知识解决问题吧!

众数中位数教案 篇5

一、教材结构与内容简析

《中位数与众数》是北师大版义务教育课程标准实验教科书小学数学第十册第七单元第三节的内容。在此之前,学生已学习了简单的数据统计、认识了简单的条形统计图、折线统计图、扇形统计图,会求平均数,这为本节的学习起着重要的铺垫作用。《中位数和众数》一课是《数学课程村准》对小学数学教学内容的一个新的要求,本节课主要是让学生在实际情境中认识并会找一组数据的中位数和众数,能解释其实际意义。这是一节概念课,同时也是学生学会分析数据,作出决策的基础课。既是对前面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的非常好的素材。

教学目标:

1.在实际情境中,认识并会求一组数据的中位数、众数,并解释其实际意义。

2.根据具体的问题,能选择恰当的统计量表示数据的不同特征。

3.感受统计在生活中的应用,增强统计意识,发展统计观念。

教学重点:

认识并会求一组数据的中位数、众数,并解释其实际意义。

教学难点:

根据具体的问题,能选择恰当的统计量表示数据的不同特征。

二、说教学、学法

本节课,结合概念教学的特点以及小学生的学情,教学中以具体情境为背景,通过直观图示、视频等方式,让学生充分感知。采用启发式、小组合作与尝试练习相结合的教学方法,突出体现以学生为主体的探索性学习活动。以调动学生学习的自觉性、积极性。并依据学生的认知规律,对例题进行加工、调整。在探求规律时适当给予启发、引导学生逐步学会通过比较、归纳,最后概括出一类事物的本质属性的学习方法。从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。

三、教学过程

(一)创设情景,提出问题

我运用跳绳比赛这样一个问题情境,播放跳绳比赛视频,随之提出问题,问学生哪组同学跳绳的中等水平好一些?让学生进行大胆的猜测。然后教师出示这两同学比赛的平均成绩,让学生进行比较。最后再完整地出示小组成员中每人的跳绳成绩。引导学生比较,观察,引导学生感知,平均数130不能很好地代表这组同学跳绳的中等水平,只要找到能代表这组同学跳绳中等水平的数字,才能做出比较。

这个环节我采用了创设问题情境的教学方法,引发学生的认知冲突,体会学习中位数的必要性。学生在自主观察思考的过程中初步体会中位数的意义,为解决本课的重点打下伏笔。

(二)合作探讨、探究新知

1、探究中位数。

出示第一小组跳绳成绩表,请学生找出哪个数能够很好地代表这一小组同学跳绳的中等水平,先独立思考,然后小组交流,全班汇报,说明选哪个数。

(设计意图:问题的引入让学生在思考中初步感知求中位数的方法。通过讨论交流,培养了学生的自主探索、合作交流的意识与能力。)

根据学生的回答,教师说明,我们应该选择中间的数117来代表第一小组同学跳绳的中等水平。像这样能代表一组数据中等水平的数字在数学上我们称它为这组数据的中位数。

板书:中位数

这时教师紧跟着提问:还有补充吗?如果没有补充就加以引导:将李苹和员李扬跳绳成绩换下位置。引导学生说出:必须将一组数据从大到小或从小到大排列好,中间的数才是中位数。

板书:大小排列中间的数

然后练说什么是中位数,解释中位数117实际意义。

师强调找中位数的方法:先排序,再找中位数

(设计意图:这个环节我采用了建立模型的教学方法让学生进行观察思考,引导学生一步步准确、完整地说出中位数的意义,从而突破重点。)

(2)探究数据个数是奇数时中位数的求法。

师课件出示第二小组同学跳绳成绩,请学生求出这组数据的中位数,解释实际意义。

小结:从中位数来比较,第二组跳绳中等水平高于第一小组。所以第二小组跳绳的中等水平好一些。

(设计意图:此环节的设计,及时的巩固找中位数的方法,并通过情景的选择,加深理解学习中位数的必要性。)

(3)探究数据个数是偶数时中位数的求法。

教师继续延续刚才的情境,比赛规则发生改变,由原来的七人变成了八人出示这时成绩统计表,问:现在中位数是多少?先自己试做,然后小组交流。得出中间是两个数时中位数的求法,

(设计意图:本环节通过变换情境的方法继续引导学生进行探究思考,解决重难点,让学生在情境中应用知识,在情境中解决问题。)

(4)总结中位数的求法。

大屏幕出示刚才的数据,比较这两组数据中位数的求法发现其中的规律。引导学生回答:当数据的个数是奇数时,中位数是中间的数;当数据的个数是偶数时,中位数是中间两个数的平均数。

(设计意图:通过对之前求中位数方法的学习,引导学生进行解题方法的归纳,加深对中位数求法的掌握。)

(5)及时练习:出示某超高员工工资表。

师问:哪个数能代表超高员工工资的中等水平?学生独立完成

2、探究众数。

(1)认识众数。

教师再次利用刚才的情境,比赛规则变成十人参加。出示这时的统计表,请学生找出现在哪个数能代表这一小组多数人的跳绳水平。得出众数的意义

板书:众数解释实际意义

(设计意图:本环节引导学生主体观察,建立众数模型,从而让学生掌握另一重点---众数。)

(2)认识众数的不唯一性。

教师修改数据:由于同学勤加苦练,,同学们的跳绳成绩都有所提高,出示统计表。

请学生找出众数,得出众数的不唯一性。

板书:不唯一解释实际意义。

小结,师板书课题。

师进一步强调:众数只和数据的个数和位置有关接着是通过对学生体重和鞋号的统计数据进行分析,练习中位数和众数。

(设计意图:及时巩固、归纳、总结本节课的内容,有助于学生对新知的学习得到进一步提高,达到强化理解新知的目的。)

之后是用三道选择题对学生的学习情况进行检测。

(当堂检测是我校近期实施的构建高效课堂方案的策略之一,这种检测形式具有及时性,实效性,有助于教师及时掌握学生对新知的理解程度,并有效提高课堂效果。这道题就是检测学生是否理解本课知识,能否将概念应用于生活实际之中,具有较强的实效性。)

最后是课堂总结,让学生谈谈自己的收获。

我在本节课的教学设计中紧紧围绕课程标准中指出的,要让学生感受知识的产生和应用的过程,形成问题情境建立模型解释与应用的基本模式这一宗旨。在情境中引发学生的认知冲突,体会学习中位数的必要性;在情境中理解中位数和众数的意义,学会求法;在情境中应用知识,解决生活中的实际问题。体现了数学来源于生活,又高于生活,并运用于生活,为生活服务的教学理念。

三、板书设计

中位数和众数

众数中位数教案 篇6

A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:河南中考选择题16题.河南中考选择题19题,河南中考选择题3题,河南中考填空题9题。“一高英才杯” 选择题3题。

1、知识目标:

①使学生理解众数与中位数的意义。

②会求一组数据的众数和中位数。

3、德育目标:

①培养学生认真、耐心、细致的学习态度和学习习惯。

②渗透数学知识来源于生活,反过来又服务于生活的'思想。

2.教学难点:

①平均数、众数、中位数这三数之间的区别与联系。

②偶数个数据的中位数的求法。

3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

①怎样求一组数据的平均数?

②平均数与一组数据中的每个数据均有关系吗?

这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数――众数和中位数。

众数中位数教案 篇7

1、课件出示招聘启示:

招聘启示

本商场由于扩大规模,现招聘工作人员若干,月平均工资1000元,有意者请到我处面谈。

新世界商场20xx年5月20日

淘气认为月平均工资1000元,待遇不错,于是来到这家公司。一个月后他拿到了650元的工资,觉得十分不满,他的工资水平远远低于1000元,于是找到了经理。经理拿出了该公司工作人员月工资表,并再三强调月平均工资没有错,那么问题究竟出在哪呢?

新世界商场工作人员工资表

单位:元

员工

经理

副经理

职员A

职员B

职员C

职员D

职员E

职员F

职员G

职员H

职员I

月薪(元)

3000

2000

900

800

750

650

600

600

600

600

500

2、小组讨论并汇报

二、探究新知

1、中位数

那么你认为哪个数据更接近大多数工作人员的月工资水平,请同桌交流一下。

2、学生交流并汇报

3、师引导学生找出中位数并起名字(板书:中位数)

4、做三组练习(奇数、偶数、打乱顺序)师引导学生学会在不同情况下找到中位数的方法,并通过打乱顺序发现要想找到中位数,数据排列必须是有序的。

A、3648657092

B、250310400600750810

5、中位数:一组数据按大小顺序排列,位于最中间的(或最中间的两个数的平均数),一个数据叫做这组数据的中位数

6、众数

过了一段时间后,又有两名应聘者来到了商场应聘,请大家看看新的工资统计表

经理

副经理

员工A

员工B

员工C

员工D

员工E

员工F

员工G

员工H

员工I

月工资

3000

2000

900

800

750

650

600

500

400

600

600

7、出现次数最多的数我们就把它称为众数(板书:众数)

三、巩固拓展

1、数据10,15,18,25,32,34,48,50的,中位数是()。

2、某配件厂生产组有11名工人,4月份每人的日均生产零件个数是:42,44,44,46,48,48,48,50,51,51,56,请根据这些数据求出工人的日生产量的平均数、中位数、众数。

(1)小组合作求出本组数据的平均数、中位数

(2)平均数、中位数在这里能说明什么?

四、全课总结

通过这节课的学习,你有什么收获?

众数中位数教案 篇8

平均数、中位数和众数的选用教学反思

平均数、中位数和众数是三种反映一组数据集中趋势的统计量。本课教学我主要体现了以下两个特点:

一、创设情境,引发认知冲突。

“问题是数学的心脏”,有了问题才会思索,有了问题才可以引发学生认识上的冲突。这节课通过具体问题情景:这个公司员工收入到底怎样呢?引起学生对“月工资水平”的认知冲突,发现单靠“平均数”来描述数据特征有时不合适,从而激发了学生的学习兴趣,使学生轻松的学习。

二、在分析讨论中促进学生对概念的理解。

中位数和众数的概念,我没有直接给出,二是通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构的`。这样做使学生逐步体会到这两个统计量都反映一组数据的集中趋势,但是描述的角度并不同,可以比较全面、争取地理解所学知识。在教学中,学对学生的各种回答给予肯定,各人从不同的角度理解会得到不同的结论。然后通过学生合作交流,相互完善,在自主探索中发现概念的形成过程。让学生认识到研究数据的必要性。然后针对几个数据的特点,向同学们介绍中位数与众数的概念。

在学生描述的基础上为加深印象,我适当补充说明:“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间(或最中间两个数据的平均数)。“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多。形象语言的描述让学生更易理解、掌握这两个概念。

三、在学以致用中体会区别

这一环节,由浅入深设置问题串,使学生思维分层递进,目的是突出本节重点,分解了难点;通过追问层层引导,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善知识结构。

练习时,在同一具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别。这样更加具有很强的生活色彩,让学生体现了众数,中位数在日常生活中的应用。并激发学生学习的兴趣。

众数中位数教案 篇9

中位数和众数第二课时教案

一、教学目标:

1、进一步认识平均数、众数、中位数都是数据的代表。

2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。

3、能灵活应用这三个数据代表解决实际问题。

二、重点、难点和突破难点的方法

1、重点:了解平均数、中位数、众数之间的差异。

2、难点:灵活运用这三个数据代表解决问题。

3、难点的突破方法:

首先应复习近平均数、众数和中位数的定义,将这三者进行比较,归纳三者的各自特点,以保证学生在应用过程中不致盲目乱用。以下是这三个数据代表的异同。

平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量。另外要注意:

平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.

众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.

平均数的`大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.

中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.

实际问题中求得的平均数,众数,中位数应带上单位.

例题6的讲解要到位,分析要清楚,既要讲明白例题,也要使学生通过这个例题知道怎样去应用这三个数据代表分析问题,具体的注意事项将在例习题的意图分析中介绍。

三、例习题的意图分析:

教材P146例6的意图

(1)、这是在学习过数据的收集、整理、描述与分析之后涉及到这四个环节的一个例题,从分析和解答过程来看它交待了该如何完整的进行这几个过程,为该怎样综合运用已学的统计知识解决实际问题作了一个标准范例。教师在授课过程中也应注意,对已学知识的巩固复习。

(2)、从分析和解答过程来看,此例题的一个主要意图是区分平均数、众数和中位数这三个数据代表的异同。

(3)、由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。

(4)、本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。

四、课堂引入:

本节课的课堂引入可以通过复习近平均数、中位数和众数定义开始,为完成重点、突破难点作好铺垫,没有必要牵强的加入一个生活实例作为引入问题。

五、例习题的分析:

例题6中第一问是在巩固平均数定义、中位数定义和众数的定义。可以引导学生从问题中词语特点分析它们分别指哪个数据代表,教师也可以顺便加一个发散性问题,一般地哪些词语是指平均数、中位数和众数呢?

例题6中的第二问学生一般不易想到,教师要将较高目标衡量标准引向三个数据代表身上,这样学生就不难回答了。

第三问要抓住一半左右应与哪个数据代表的意义相符这个问题。即要很好的回答第三问,学生头脑必须很清楚平均数、中位数、众数的特点。

六、随堂练习:

1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:

分别求出这些学生成绩的众数、中位数和平均数.

2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)

甲群:13、13、14、15、15、15、16、17、17。

乙群:3、4、4、5、5、6、6、54、57。

(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。

答案:1.众数90中位数85平均数84.6

2.(1)15、15、15、众数(2).15、5.5、6、中位数

七、课后练习:

1、某公司的33名职工的月工资(以元为单位)如下:

(1)、求该公司职员月工资的平均数、中位数、众数?

(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)

(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?

2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示:

根据表中的信息填空:

(1) 该公司每人所创年利润的平均数是 万元。

(2) 该公司每人所创年利润的中位数是 万元。

(3) 你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?答

答案:1.(1).2090 、500、1500

(2).3288、1500、1500

(3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平。

2.(1)3.2万元 (2)2.1万元 (3)中位数

众数中位数教案 篇10

教学目标:

1.在丰富的现实背景中,理解并体会中位数和众数的意义;会求中位数与众数,并能够解释结果的实际意义。

2.能够知道平均数、中位数、众数的区别,并根据现实生活中具体的情况,选择适当的统计量表示数据的不同特征。

3.培养学生具体问题具体分析的能力;体会数学服务于生活。

教学重点:

1、中位数与众数的意义。

2、对统计量的选择能力。

教学难点:对众数意义的理解。

教学过程:

一、创设教学情境。

1.教师讲述牟冠名同学应聘的故事

师:假设同学们大学毕业了,牟冠名同学想找一份合适的工作,他到处找寻信息,终于发现两则及负有吸引力的招聘广告:(大屏幕出示)

旺旺电脑:公司现有员工9名,人均月收入2500元,欲招一名会制作电脑动画的大学生,有意者请光临加盟。

星辰软件公司创意部:现有员工10名,人均月收入2000元,欲招一名能力强,绘画水平高的大学毕业生,有意者欢迎前来洽谈。

师:牟冠名拿不定主意了,他想求助于同学们,现在请同学们根据这些信息,帮他做出选择,你同意他去哪家公司,说出为什么?(学生可以在小组里讨论)

学生讨论后,请学生说一说自己的意见。(可能出现两种意见,有的学生认为他应该去工资比较高的公司,有的学生认为应该看一看两个公司的员工的具体工资,然后再作决定)

二、教学中位数、众数的定义。

1.教师出示两家公司的具体工资资料:

旺旺电脑公司

经理:8200元

副经理:7600元

员工A:1300元

员工B;1200元

员工:1150元

员工:800元

员工:800元

员工:800元

员工:650元

星辰软件公司

经理:2600元

副经理:2250元

员工B;2200元

员工:2050元

员工:2050元

员工:1950元

员工:1900元

员工:1900元

员工:1900元

员工:1200

2.初步感受并理解中位数的意义:

①分析上面两个公司的工资收入情况,你认为牟冠名应该去哪个公司?

②旺旺公司的平均工资怎么会比星辰公司的月平均工资高呢?(因为旺旺公司总经理与副总经理的工资高。)

③假设牟冠名同学加入星辰软件公司,老板决定给他的工资是1900元。通过分析他的工资状况学习中位数、众数的意义。

④出示整个星辰公司员工的姓名和工资状况表格(员工的姓名都是本班同学的姓名)

总经理:2600元

惠宇宁:2250元

刘砾丹:2200元

马畅:2050元

刘嘉雯:2050元

秦少宇:1950元

牟冠名:1900元

高云博:1900元

孙弘博:1900元

闫子徽:1900元

王佳音:1200元

⑤观察上面的工资状况,

师:你认为牟冠名的工资处于什么水平?用哪些数据可以证明你的观点?(学生可能认为1900小于平均数2000,所以他的工资属于中下等水平。)

(教师可以不反驳这种观点,出示旺旺公司的工资状况,在旺旺公司中,职员1的工资1300元虽然低于平均数,但不是处于中下水平,用以说明判断他的工资处于什么水平是不能够选取平均数做比较的,于是就找到了中位数。)

教师总结:中位数(板书:中位数:650),

⑥每个同学都说一说自己的工资在这个公司中处于什么水平?你是怎样比较的?

教师引导并要求给中位数做一个形象的比喻,觉得中位数象什么?

(中位数好象正负数中的0刻度线,好象人的腰部,还可以看作是一个水平面,但要求上面的部分和下面的部分的数量要相等,而且要按照从小到大的顺序排列)。

教师小结:中位数就是一条分界线,把这些数分成数量相等的两个部分,而且数的排列要按照从大到小的顺序排列。

3.初步感受并理解并感受众数的意义

师:在这些人的工资中,挣多少钱的人数最多?这个数我们就给他起个名字,叫做众数。

幻灯片上面出现下面的表格用以解释众数。

工资220xx8501800165015501500800

出现次数1112141

三、初步感受平均数、中位数、众数的不同。

师:你认为平均数、中位数和众数中哪个更能够准确、真实地反映出员工的工资情况呢?

1.介绍中位数和众数的求法。

①求出下面各组数的中位数并说一说这个中位数表示的意义。

15名同学为希望工程的小伙伴捐款。捐款的钱数如下。(单位:元)

10、15、16、16、20、22、24、25、26、28、29、30、30、33、50

②求众数,并说一说这个众数表示的意义。调查六年九班女同学父亲的年龄如下(单位:岁)

39、41、37、41、41、42、39、39、39、39、40、43、39、41、39、39、41、37、41、38、42、38、40、40

40、40、39、41、37、

四、进一步理解中位数、众数的意义

下面是五年九班第一、二小组男生身高的统计数据。

学生身高/米学生身高/米学生身高/米

小舟1.45小航1.59程程1.65

凯恒1.47天乙1.61博博1.65

小宇1.50熙熙1.61默默1.71

小文1.53小博1.64

小名1.58小达1.65

a.求身高的众数。它表示什么意思?

b.求身高的中位数,它表示什么意思?

c.彤彤说小博的身高较低。你同意吗?说说你的看法。

d.你认为小文的身高在这些男生中处于什么水平?

e.你认为平均数、中位数、中数哪一个能代表身高的平均水平?

五、总结中位数和众数的意义。

教师引导学生用自己的话说一说什么是中位数、什么是众数?

(在所有数据中,出现次数最多的数据,就是众数。

把数据从大到小排列,位于中间的那个数,就是中位数。)

六、能够恰当地选用平均数、中位数、众数表示数据的不同特征。

1.要表示同学们最喜欢的动画片,应该选取()。

A平均数B中位数C众数

2.五年一班有40人,五年二班有42人,要比较期末考试时哪个班的成绩高一些,应该选取()。

A平均数B中位数C众数

3.在青年歌手比赛中,某个选手想知道自己到底处于什么水平,应该选取()。

A平均数B中位数C众数

4.能够应用中位数、众数的知识解决生活中的实际问题。

下面是对六年九班男同学鞋的号码所做的调查表。

姓名鞋号姓名鞋号姓名鞋号姓名鞋号

于航40牟冠名41高云博39孙归舟39

王月峰39李熙宇41焦健40闫紫徽41

王靖程42李一聪39景诗文41赵天赐40

王志聪41杨天杭41惠宇宁42秦绍宇39

王琛元43宋展飞41吴博豪42李一墨43

王天乙42张茁41孙硕珩42

吕昊42罗熙41刘凯恒39

孙弘博41徐达40董承鑫42

如果王叔叔想在学校附近开一家鞋店,主要面向10多岁的男生,根据上面的统计表,你能给王叔叔提出什么建议?

本文网址://m.289a.com/shengrizhufudaquan/75730.html

相关文章 更多
最近更新 更多
热门推荐